A Deep Model for Species-Specific Prediction of Ribonucleic-Acid-Binding Protein with Short Motifs

Author:

Wei Zhi-Sen12ORCID,Rao Jun1,Lin Yao-Jin1

Affiliation:

1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, China

2. Fujian Province Universities Key Laboratory of Data Science and Intelligent Application, Minnan Normal University, Zhangzhou 363000, China

Abstract

RNA-binding proteins (RBPs) play an important role in the synthesis and degradation of ribonucleic acid (RNA) molecules. The rapid and accurate identification of RBPs is essential for understanding the mechanisms of cell activity. Since identifying RBPs experimentally is expensive and time-consuming, computational methods have been explored to predict RBPs directly from protein sequences. In this paper, we developed an RBP prediction method named CnnRBP based on a convolution neural network. CnnRBP derived a sparse high-dimensional di- and tripeptide frequency feature vector from a protein sequence and then reduced this vector to a low-dimensional one using the Light Gradient Boosting Machine (LightGBM) algorithm. Then, the low-dimensional vectors derived from both RNA-binding proteins and non-RNA-binding proteins were fed to a multi-layer one-dimensional convolution network. Meanwhile, the SMOTE algorithm was used to alleviate the class imbalance in the training data. Extensive experiments showed that the proposed method can extract discriminative features to identify RBPs effectively. With 10-fold cross-validation on the training datasets, CnnRBP achieved AUC values of 99.98%, 99.69% and 96.72% for humans, E. coli and Salmonella, respectively. On the three independent datasets, CnnRBP achieved AUC values of 0.91, 0.96 and 0.91, outperforming the recent tripeptide-based method (i.e., TriPepSVM) by 8%, 4% and 5%, respectively. Compared with the state-of-the-art CNN-based predictor (i.e., iDRBP_MMC), CnnRBP achieved MCC values of 0.67, 0.68 and 0.73 with significant improvements by 6%, 6% and 15%, respectively. In addition, the cross-species testing shows that CnnRBP has a robust generalization performance for cross-species RBP prediction between close species.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3