Improving Grain Size Analysis to Characterize Sedimentary Processes in a Low-Energy River: A Case Study of the Charente River (Southwest France)

Author:

Duquesne Amélie1,Carozza Jean-Michel1

Affiliation:

1. Department of Human and Social Sciences, La Rochelle University, LIENSs CNRS-UMR 7266, 17000 La Rochelle, France

Abstract

The recognition and quantification of fluvial transport and depositional processes has widely been studied. However, few works have focused on the interpretation and quantification of sedimentary processes in low-energy fluvial environments. This paper features and compares the results of five methods of grain size data processing (statistic moments, textural analysis, multivariate statistics combining Principal Component Analysis and hierarchical cluster analysis, and CM image and end-member modeling analysis) and discusses their efficiencies in characterizing low-energy alluvial plain deposits. These environments are characterized by fine grain size, high-homogeneity deposits at the macroscopic scale, and low grain size variability, hence presenting a difficulty in identifying and splitting an apparently homogeneous sedimentary record into sedimentary sequences. These statistical methods are applied on a ~9 m long core extracted from the fluvial island of la Baine located in the downstream section of the Charente River (Chaniers, Charente-Maritime, France). In the light of these results, elementary statistical parameters (statistical moments, modes, and sorting index) have limited interest in the sedimentary description and interpretation of fine fluvial deposits. Textural analyses are more informative but highly dependent on the classification scheme. Only the multivariate statistics approach and end-member modeling analysis present interesting results and allow the robust identification of sub-units. However, multivariate statistics results are dependent on the choice of input variables and do not support non-zero values, while the second method, the most recent and complex one, needs further developments to clearly connect end-member classes to sedimentary processes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference81 articles.

1. Rivière, A. (1977). Méthodes Granulométriques-Techniques et Interprétations, Masson.

2. Bagnold, R.A. (1966). An Approach to the Sediment Transport Problem from General Physics, Geological Survey Professional Paper 422-I.

3. Brazos River bar: A study in the significance of grain-size parameters;Folk;J. Sed. Petrol.,1957

4. A review of grain-size parameters;Folk;Sedimentology,1966

5. Texture as characteristic of clastic deposition;Passega;AAPG Bull.,1957

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3