Affiliation:
1. Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Ankara Yıldırım Beyazıt University, Ankara 06760, Turkey
2. Electrical Electronics Engineering Department, Faculty of Engineering, Gazi University, Ankara 06570, Turkey
3. Biomedical Calibration and Research Center (BIYOKAM), Gazi University Hospital, Gazi University, Ankara 06560, Turkey
Abstract
Understanding usual anatomical structures and unusual root formations is crucial for root canal treatment and surgical treatments. Root dilaceration is a tooth formation with sharp bends or curves, which causes dental treatments to fail, especially root canal treatments. The aim of the study was to apply recent deep learning models to develop an artificial intelligence-based computer-aided detection system for root dilaceration in panoramic radiographs. A total of 983 objects in 636 anonymized panoramic radiographs were initially labelled by an oral and maxillofacial radiologist and were then used to detect root dilacerations. A total of 19 state-of-the-art deep learning models with distinct backbones or feature extractors were used with the integration of alternative frameworks. Evaluation was carried out using Common Objects in Context (COCO) detection evaluation metrics, mean average precision (mAP), accuracy, precision, recall, F1 score and area under precision-recall curve (AUC). The duration of training was also noted for each model. Considering the detection performance of all models, mAP, accuracy, precision, recall, and F1 scores of up to 0.92, 0.72, 0.91, 0.87 and 0.83, respectively, were obtained. AUC were also analyzed to better understand where errors originated. It was seen that background confusion limited performance. The proposed system can facilitate root dilaceration assessment and alleviate the burden of clinicians, especially for endodontists and surgeons.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献