Removal of Metals and Dyes in Water Using Low-Cost Agro-Industrial Waste Materials

Author:

Tejada-Tovar Candelaria1ORCID,Villabona-Ortíz Ángel1ORCID,Ortega-Toro Rodrigo2ORCID

Affiliation:

1. Process Design, and Biomass Utilization Research Group (IDAB), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia

2. Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia

Abstract

The pollution of water bodies due to the discharge of effluents without treatment is a global problem. Therefore, different technologies have been implemented for the removal of contaminants from wastewater before the final disposition. Among them, adsorption processes using residual biomasses are becoming very popular due to the low cost and high availability of adsorbents. Thus, in the present work, the synthesis of modified biochar from agro-industrial residues derived from the wheat-processing industry, as a valorization alternative of these residues, for its use in the removal of Cr (VI) and methylene blue (MB) has been analyzed. The biochar was prepared using a ramp function of 5 °C/min until 250 °C for 30 min. The adsorption tests were developed in a batch system, using 30 mg of adsorbent in 10 mL of solution. From SEM analysis, the formation of tubular cavities and porous structure was seen, caused by the basic hydrolysis with KOH. From adsorption tests, an adsorption capacity of 12.98 mg/g and 97.38% of efficiency for MB at pH 10 was noted, while for Cr (VI), it was 11.35 mg/g and 85.15% at pH 2. Freundlich’s model adjusted the adsorption equilibrium data with R2 > 0.9. The maximum adsorption capacities in the monolayer were 186,375 mg/g and 90.723 mg/g for Cr (VI) and MB, according to Langmuir’s model. From a kinetic study, it can be said that the process occurs by chemisorption through electrostatic interaction and ionic interchange between adsorbate and adsorbent.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3