Mechanical Properties of Slag-Based Geopolymer Grouting Material for Homogenized Micro-Crack Crushing Technology

Author:

Li Wenjie1,Liang Bin1,Yue Jinchao2

Affiliation:

1. School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, China

2. Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China

Abstract

Homogenized micro-crack crushing can fully retain the bearing capacity of concrete pavement, but local weak road base needs to be reinforced before being directly overlaid with hot-mixed asphalt. Therefore, indoor tests were conducted to study the mechanical properties of slag-based geopolymer as a grouting material for weak road base, and the morphology and influence of polymerization reactants were observed. Concurrently, on-site grouting tests were conducted to study the grouting effect. The results show that the compressive strength, flexural strength and bonding strength of slag-based geopolymer all increase with age. The maximum compressive strength and flexural strength of the geopolymer at 28 d were 18.88 MPa and 6.50 MPa, respectively. The maximum flexural bonding strength at 14 d was 4.58 MPa. As the ratio between water and slag powder increased, the compressive strength and flexural strength gradually decreased, while the bonding strength first increased and then decreased. In the range of ratios of water to slag powder from 0.26 to 0.28, the above three strengths were relatively high, and the compressive shear bonding strength was the highest when the ratio of water to slag powder was 0.28. The shrinkage of the slag-based geopolymer increases with the increase in ratio of water to slag powder, and the porosity also increases, resulting in a decrease in compactness after consolidation. When the ratio of water to slag powder was 0.28, the reactant was mainly a gel-phase material, and the shrinkage crack of the consolidated geopolymer was relatively small. After grouting the weak road base of the concrete pavement, the voids at the bottom of the concrete pavement slab were effectively filled, and the deflection of the pavement slab was significantly reduced. The average deflections of monitoring line I, monitoring line II and monitoring line III decreased by 49%, 41% and 54%, respectively, after grouting. After solidification, the slag-based geopolymer was distributed in layers, which further compacted the road structure layer and improved the bearing capacity.

Funder

the Project of Science and Technology of Henan Transportation Department

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3