Maximum Power Point Tracking Algorithm of Photo-Voltaic Array through Determination of Boost Converter Conduction Mode

Author:

Noman Abdullah M.1ORCID,Sheikh Haseeb Shakeel2,Murtaza Ali Faisal2ORCID,Almutairi Sulaiman Z.1,Alqahtani Mohammed H.1ORCID,Aljumah Ali S.1

Affiliation:

1. Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Faculty of Engineering, University of Central Punjab, Lahore 54000, Pakistan

Abstract

In this paper, we present a new maximum power point tracking (MPPT) algorithm that can identify whether a boost converter is operating in continuous conduction mode (CCM) or discontinuous conduction mode (DCM). The conventional MPPT algorithm assumes that the converter is always in CCM mode, even though this is not always the case. The converter can enter DCM mode due to factors such as the inductor size, irradiance and temperature conditions, voltage step size of the algorithm, and operating point of the PV array. In the proposed work, the conduction mode of a boost converter is evaluated under different conditions. The region of the I–V curve where the converter is likely to operate in DCM mode is identified and a mathematical expression developed in this work is then used to detect the conduction mode of the converter. The proposed algorithm incorporates this expression into a modified perturb and observe (P&O) algorithm. In each iteration, the algorithm first detects the conduction mode of the converter. If the converter is in DCM mode, the algorithm takes a large voltage step to force the converter back into CCM mode, i.e., into the constant current region. The proposed MPPT algorithm was tested using simulation experiments, and the results show that the proposed algorithm can significantly improve the efficiency of the MPPT process.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3