Fabrication of Polysaccharide-Based Coaxial Fibers Using Wet Spinning Processes and Their Protein Loading Properties

Author:

Sagawa Takuya12,Morizumi Hiroki2,Iijima Kazutoshi12ORCID,Yataka Yusuke12ORCID,Hashizume Mineo12ORCID

Affiliation:

1. Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

2. Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

Abstract

Fibers composed of polysaccharides are a promising candidate to be applied for biomaterials such as absorbable surgical sutures, textile fabrics, and hierarchical three-dimensional scaffolds. In this work, in order to fabricate biocompatible fibers with controlled-release abilities, the fabrication of coaxial fibers of calcium alginate (ALG-Ca) and polyion complexes (PICs) consisting of chitosan (CHI) and chondroitin sulfate C (CS), denoted as ALG-PIC fibers, by using a wet spinning process, and the evaluation of their molecular loading and release behavior were performed. The diameter and mechanical strength of the obtained ALG-PIC fibers increased with increasing concentrations of the CHI solution for PIC coatings. This indicated that higher concentrations of the CHI solution afforded a thicker PIC coating layer. Further, fluorescein isothiocyanate labeled-bovine serum albumin (FITC-BSA)-loaded ALG-PIC fibers were successfully prepared. The release behavior of FITC-BSA in the fibers exhibited a slower rate at the initial state than that in ALG-Ca, indicating that PIC coatings suppressed an initial burst release of the loading molecules. Accordingly, the fabricated coaxial fibers can be utilized as sustained-release drug carriers.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3