A New Hybrid Algorithm Based on Improved MODE and PF Neighborhood Search for Scheduling Task Graphs in Heterogeneous Distributed Systems

Author:

Lotfi Nasser1,Ghadiri Nejad Mazyar2ORCID

Affiliation:

1. Computer Engineering Department, Cyprus International University, Nicosia 99258, TRNC, Turkey

2. Industrial Engineering Department, Cyprus International University, Nicosia 99258, TRNC, Turkey

Abstract

Multi-objective task graph scheduling is a well-known NP-hard problem that plays a significant role in heterogeneous distributed systems. The solution to the problem is expected to optimize all scheduling objectives. Pretty large state-of-the-art algorithms exist in the literature that mostly apply different metaheuristics for solving the problem. This study proposes a new hybrid algorithm comprising an improved multi-objective differential evolution algorithm (DE) and Pareto-front neighborhood search to solve the problem. The novelty of the proposed hybrid method is achieved by improving DE and hybridizing it with the neighborhood search method. The proposed method improves the performance of differential evolution by applying appropriate solution representation as well as effective selection, crossover, and mutation operators. Likewise, the neighborhood search algorithm is applied to improve the extracted Pareto-front and speed up the evolution process. The effectiveness and performance of the developed method are assessed over well-known test problems collected from the related literature. Meanwhile, the values of spacing and hyper-volume metrics are calculated. Moreover, the Wilcoxon signed method is applied to carry out pairwise statistical tests over the obtained results. The obtained results for the makespan, reliability, and flow-time of 50, 18, and 41, respectively, by the proposed hybrid algorithm in the study confirmed that the developed algorithm outperforms all proposed methods considering the performance and quality of objective values.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3