The Wind and Photovoltaic Power Forecasting Method Based on Digital Twins

Author:

Wang Yonggui1,Qi Yong1ORCID,Li Jian1,Huan Le1,Li Yusen1,Xie Bitao1,Wang Yongshan1

Affiliation:

1. School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi’an 710016, China

Abstract

Wind and photovoltaic (PV) power forecasting are crucial for improving the operational efficiency of power systems and building smart power systems. However, the uncertainty and instability of factors affecting renewable power generation pose challenges to power system operations. To address this, this paper proposes a digital twin-based method for predicting wind and PV power. By utilizing digital twin technology, this approach provides a highly realistic simulation environment that enables accurate monitoring, optimal control, and decision support for power system operations. Furthermore, a digital twin platform for the AI (Artificial Intelligence) Grid is established, allowing real-time monitoring, and ensuring the safe, reliable, and stable operation of the grid. Additionally, a deep learning-based model WPNet is developed to predict wind and PV power at specific future time points. Four datasets are constructed based on weather conditions and historical wind and PV power data from the Flanders and Wallonia regions. The prediction models presented in this paper demonstrate excellent performance on these datasets, achieving mean square error (MSE) values of 0.001399, 0.001833, 0.000704, and 0.002708; mean absolute error (MAE) values of 0.025164, 0.027854, 0.018592, and 0.033501; and root mean square error (RMSE) values of 0.037409, 0.042808, 0.026541, and 0.052042, respectively.

Funder

Shaanxi Provincial Department of Education Service Local Special Plan Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3