Identifying the Key Hazards behind Website Drop-Offs by Solving a Survival Problem

Author:

Soobramoney Judah1ORCID,Chifurira Retius1,Chinhamu Knowledge1ORCID,Zewotir Temesgen1

Affiliation:

1. School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 3630, South Africa

Abstract

Within the modern era, corporates are compelled to own an appealing and effective website to survive and thrive within the competitive global digital marketplace. Whilst there are several web metrics to focus on, a key focus area of web analytics is the level of drop-offs. The drop-off rate represents the proportion of visitors that prematurely drop-off a website. Whilst the exact reason behind the drop-off may only be assumed (could be due to the loss of Internet connectivity or dis-interest), this study attempted to identify the triggers behind website drop-offs through a survival problem. Each person entering the website, at a given instance, can view any number of web pages (such as home, contact us, about us, etc.). However, on the studied website, roughly one in five visitors have prematurely dropped-off. The study was conducted on an engineering corporate website with the data collected via the Google Analytics tracking tool. The aim was to determine the key hazards that contributed to the observed drop-off rate through the use of a cox proportional hazard model and a survival random forest model. On the studied website, based on empirical evidence, the online visitors were censored so that those who viewed three or more webpages within the visit were labelled as ‘survived’. Visitors who viewed two or less webpages before leaving the website were labelled as ‘did not survive’. Thereby, the ‘did not survive’ observations represented the visits that prematurely dropped off the website. Using the visitor’s physical and behavioral characteristics, as tracked by Google Analytics, the cox-proportional hazard and survival random forest models were employed to determine the hazards that influence survival. Visitor’s physical characteristics include the device used to access the website, geolocation at the time of the visit, number of previous visits, etc., whilst the behavioral characteristics include the landing page on website, level of engagement, whether entry into the website originated through an organic search or not. Whilst both models have identified similar features as being key hazards, the survival random forest model has been shown to out-perform on the non-linear features relative to the cox proportional hazard model and obtained a higher classification accuracy. During the validation process, the survival random forest model (63%) outperformed the cox model (58%) on classification accuracy. The features that were identified as hazardous indicated that some webpages needed further attention, the visitor’s level of engagement with the website (the degree of scrolling and clicks), the distance between a visitor’s location and the studied corporate’s location, the historic frequency of visiting the website, and if the website entry point was through an organic search. Whilst the study of drop-offs has been a commonly researched problem, this study details the investigation of key hazards through the use of survival models and compares the outcomes of a regression-based model to a machine learning survival model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3