A Network Analysis Approach to Detecting Social Issues with Web-Based Data

Author:

Lee Seunghyun1,Lee Jiho1,Lee Jae-Min2,Chun Hong-Woo2,Yoon Janghyeok1

Affiliation:

1. Department of Industrial Engineering, Konkuk University, Seoul 05029, Republic of Korea

2. Division of Data Analysis, Korea Institute of Science and Technology Information, Seoul 02456, Republic of Korea

Abstract

Social issues refer to topics that occur and become increasingly focused in various areas of society. Because of the evolutionary pattern of issues, detecting social issues requires monitoring various stories formed by members of society over time. Various studies related to issue detection have been preceded, but it is necessary to supplement in two aspects: presenting the time when issues occurred and prioritizing issues by urgency. As a remedy, the purpose of this study is to propose a new approach to detecting social issues from web-based data through network analysis. Since stories that form social issues are composed of various keywords and topics, this study detects social issues by monitoring keyword co-occurrence networks constructed with web-based data. Specifically, this approach uses network structure entropy to identify a time period at which social issues occur. Next, a community detection algorithm is used to extract social issue candidates in the identified time period. Finally, social issues are detected by deriving the priority of social issue candidates through the centrality index of keywords constituting the candidates. This study detected South Korean social issue topics that attract people’s attention among the various topics of society. The proposed approach contributes to the existing literature by identifying when social issues occurred quantitatively based on the characteristics of issues. In addition, since the proposed approach detects urgent issues to be dealt with priority, it can support timely responses to social issues.

Funder

Korea Research Institute of Science and Technology Information

Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3