A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples

Author:

Qin Haochen1ORCID,Fan Xuexin1,Fan Yaxiang1,Wang Ruitian1,Shang Qianyi1,Zhang Dong1

Affiliation:

1. National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China

Abstract

Predicting the remaining useful life (RUL) of batteries can help users optimize battery management strategies for better usage planning. However, the RUL prediction accuracy of lithium-ion batteries will face challenges due to fewer data samples available for the new type of battery. This paper proposed a transferable prediction approach for the RUL of lithium-ion batteries based on small samples to reduce time in preparing battery aging data and improve prediction accuracy. This approach, based on improvements from the adaptive boosting algorithm, is called regression tree transfer adaptive boosting (RT-TrAdaBoost). It combines the advantages of ensemble learning and transfer learning and achieves high computational efficiency. The RT-TrAdaBoost approach takes the charging voltage and temperature curve as input and utilizes the classification and regression tree (CART) as the base learner, which has better feature capture ability. In the experiment, the working condition migration experiment and battery type migration experiment are conducted on non-overlapping datasets. The verified results revealed that the RT-TrAdaBoost approach could transfer not only the battery aging knowledge between various working conditions but also realize the RUL migration prediction from lithium iron phosphate battery to lithium cobalt oxide battery. The analysis of error and computation time demonstrates the proposed method’s high efficiency and speed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3