Solving Panel Block Assembly Line Scheduling Problem via a Novel Deep Reinforcement Learning Approach

Author:

Zhou Tao1,Luo Liang1,He Yuanxin1,Fan Zhiwei1,Ji Shengchen1

Affiliation:

1. Ministry of Education Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Wuhan 420100, China

Abstract

The panel block is a quite important “intermediate product” in the shipbuilding process. However, the assembly efficiency of the panel block assembly line is not high. Therefore, rational scheduling optimization is of great significance for improving shipbuilding efficiency. Currently, the processing sequence of the panel blocks in the panel block assembly line is mainly determined using heuristic and metaheuristic algorithms. However, these algorithms have limitations, such as small problem-solving capacity and low computational efficiency. To address these issues, this study proposes an end-to-end approach based on deep reinforcement learning to solve the scheduling problem of the ship’s panel block assembly line. First, a Markov decision model is established, and a disjunctive graph is creatively used to represent the current scheduling status of the panel block assembly line. Then, a policy function based on a graph isomorphism network is designed to extract information from the disjunctive graph’s state and train it using Proximal Policy Optimization algorithms. To validate the effectiveness of our method, tests on both real shipbuilding data and publicly available benchmark datasets are conducted. We compared our proposed end-to-end deep reinforcement learning algorithm with heuristic algorithms, metaheuristic algorithms, and the unimproved reinforcement learning algorithm. The experimental results demonstrate that our algorithm outperforms other baseline methods in terms of model performance and computation time. Moreover, our model exhibits strong generalization capabilities for larger instances.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3