Affiliation:
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
2. The Greater Bay Area Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
Abstract
The resistivity method and time-domain-induced polarization (TDIP) are two branches of electric exploration that are used to solve problems in mineral exploration, hydrogeology and engineering geology. In recent years, integrating different physical parameters for joint inversion to improve the accuracy of inversion results has been extensively examined; however, three-dimensional joint inversion of the two methods above has not been realized. To further address this issue, in this research, we used the limited-memory BFGS (L-BFGS) method to develop a three-dimensional joint inversion algorithm of the resistivity method and TDIP based on the cross-gradient constraints. In the new algorithm, the resistivity method and TDIP inversion were iteratively updated alternately to ensure that the inversion results can simultaneously meet the two conditions of obtaining minimum data misfits and finding structural similarity. The three-dimensional synthetic dataset inversion results showed that the models obtained by joint inversion are more accurate in the recovery of both the boundaries and the values of the anomalies. Especially in the background of high noise, joint inversion has higher resolution for the target body. The joint inversion algorithm was also successfully applied to a groundwater detection practice in Beijing, China, in which the practicability of the algorithm was confirmed.
Funder
Key Program of National Natural Science Foundation of China
Key Research and Development (R&D) Projects of Shanxi Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献