Health State Assessment of Road Tunnel Based on Improved Extension Cloud Model

Author:

Cui Hongjun1,Chen Guang2,Zhu Minqing3,Su Yue1,Liu Jingxuan1

Affiliation:

1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

2. Zhong Dian Jian Ji Jiao Expressway Investment Development Co., Ltd., Shijiazhuang 050000, China

3. School of Architecture and Art Design, Hebei University of Technology, Tianjin 300401, China

Abstract

A scientifically accurate assessment of tunnel health is the prerequisite for the safe maintenance and sustainability of the in-service road tunnel. The changing trend of tunnel health is not considered in existing research. Most evaluation indicators are static and the ambiguities or randomness at the boundary of the health level intervals is neglected in most evaluation methods. In this paper, the evaluation index system combined with dynamic, and static is set to solve these problems. The changing trend of the health state of tunnels is analyzed through the cubic b-spline function. The weights of evaluation indicators are calculated based on the AHP-improved entropy method. The health evaluation method is proposed based on combing the extension theory and the cloud model improved by the cloud entropy optimization algorithm. Finally, the evaluation results of the proposed method are compared with the detection data of the Beilongmen Tunnel of Zhangzhuo Expressway. The results demonstrate that 80% of the evaluation results in the sample tunnel data are consistent with the standard results, and the remaining 20% show a lower level of health than the standard results. This reflects the evaluation results are impacted by the trend of tunnel health status changes. The health state can be more accurately evaluated by dynamic indicators. The improved extension cloud model is feasible and applicable in the health assessment of tunnels. This work provides innovative ideas for the evaluation of the health state of tunnels and theoretical support for the formulation of reasonable maintenance measures.

Funder

National Natural Science Foundation of China

Hebei Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3