Fundamental Investigations of the Deformation Behavior of Single-Crystal Ni-Mn-Ga Alloys and Their Polymer Composites via the Introduction of Various Fields

Author:

Chiu Wan-Ting1,Okuno Motoki1,Tahara Masaki1,Inamura Tomonari1,Hosoda Hideki1

Affiliation:

1. Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Abstract

To meet the great requirements of future technologies, such as robots, single-crystal (SC) Ni-Mn-Ga alloys and their composites were designed and investigated in this study. Ferromagnetic shape memory alloys (FSMAs) are promising materials for applications in high-speed actuators, which are core components of robots; however, there are some issues of embrittlement and small deformation strain. Therefore, in this work, we first prepared SC Ni-Mn-Ga alloys for fundamental investigations of the shape deformations under the application of different fields (e.g., compressive and magnetic fields). Second, the SC Ni-Mn-Ga alloys were integrated with polymers of epoxy resin or silicone rubber to solve the embrittlement problem. The obvious two-stage yielding and sudden intensifying of the magnetization both suggest martensite variant reorientation (MVR) under the compressive and magnetic fields, respectively. Micro-computed tomography (μCT) and an X-ray diffractometer were utilized for the observations of shape deformation brought about by the MVR of the SC Ni-Mn-Ga particles in the polymer matrix. Clear MVR and shape deformation could be found in the compressed composites.

Funder

Hitachi Metals and Materials Science Foundation

Iwatani Naoji Foundation

Tanaka Kikinzoku Memorial Foundation

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3