A Multi-Scale Deep Back-Projection Backbone for Face Super-Resolution with Diffusion Models

Author:

Gao Juhao1,Tang Ni1ORCID,Zhang Dongxiao1ORCID

Affiliation:

1. School of Science, Jimei University, Xiamen 361021, China

Abstract

Face verification and recognition are important tasks that have made great progress in recent years. However, recognizing low-resolution faces from small images is still a difficult problem. In this paper, we advocate using diffusion models (DMs) to enhance face resolution and improve their quality for various downstream applications. Most existing DMs for super-resolution use U-Net as their backbone network, which only exploits multi-scale features along the spatial dimension. These approaches result in a slow convergence of corresponding DMs and the inability to capture complex details and fine textures. To address this issue, we propose a novel conditional generative model based on DMs called BPSR3, which replaces the U-Net in super-resolution via repeated refinement (SR3) with a multi-scale deep back-projection network structure. BPSR3 can extract richer features not only in depth but also in breadth. This helps to effectively refine the image quality at different scales. The experimental results on facial datasets show that BPSR3 significantly improved both convergence speed and reconstruction performance. BPSR3 has about 1/4 of the parameters of SR3 but achieves a 50.1% improvement in PSNR, a 19.8% improvement in SSIM, and a 15.4% reduction in FID. Our contribution lies in achieving less time and space consumption and better reconstruction results. In addition, we propose an idea of enhancing the performance of DMs by replacing the U-Net with a better network.

Funder

the National Fund Cultivation Program of Jimei University

the National Natural Science Foundation of China

the Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3