Best Relay Selection Strategy in Cooperative Spectrum Sharing Framework with Mobile-Based End User

Author:

Ibrahem Lama N.1,Al-Mistarihi Mamoun F.1,Khodeir Mahmoud A.1,Alhulayil Moawiah23ORCID,Darabkh Khalid A.4ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan

2. Department of Electrical Engineering, Faculty of Engineering and Technology, Applied Science Private University, Amman 11937, Jordan

3. MEU Research Unit, Middle East University, Amman 11831, Jordan

4. Department of Computer Engineering, School of Engineering, The University of Jordan, Amman 11942, Jordan

Abstract

In this work, a cognitive relay network (CRN) with interference constraint from the primary user (PU) with a mobile end user is studied. The proposed system model employs a half-duplex transmission between a single PU and a single secondary user (SU). In addition, an amplify and forward (AF) relaying technique is employed between the SU source and SU destination. In this context, the mobile end user (SU destination) is assumed to move at high vehicular speeds, whereas other nodes (SU Source, SU relays and PU) are assumed to be stationary. The proposed scheme dynamically determines the best relay for transmission based on the highest signal-to-noise (SNR) ratio by deploying selection combiner at the SU destination, thereby achieving diversity. All channels connected with the stationary nodes are modelled using Rayleigh distribution, whereas all other links connected with the mobile end user are modelled using Nakagami-m fading distribution (m<1). The outage probabilities (OPs) are obtained considering several scenarios and Monte Carlo simulation is used to verify the numerical results. The obtained results show that a variety of factors, including the number of SU relays, the severity of the fading channels, the position of the PU, the fading model, and the mobile end user speed, might influence the CRN’s performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3