Mechanical Performance Analysis and Experimental Study of Four-Star-Type Crank-Linkage Mechanism

Author:

Chai Kai1ORCID,Lou Jingjun1,Yang Yunsheng1

Affiliation:

1. College of Naval Architecture and Ocean, Naval University of Engineering, Wuhan 430033, China

Abstract

Mechanical performance analysis and experimental study of the mechanics of the four-star-type crank-linkage mechanism of the marine air compressor were carried out to improve the submerged floating performance and stealth performance of the underwater vehicle and to meet the demand of its large diving depth. Firstly, we analyzed the forces on the four-star-type crank-linkage mechanism, derived the inertia forces and moments of the crank-linkage mechanism, and proved the advantages of the four-star-type crank-linkage mechanism in balancing the second-order reciprocating inertia forces. The static strength of some parts was calibrated, and the modal analysis of the four-star-type crank-linkage mechanism was carried out. Second, a flexible crankshaft dynamics model was established to study the influence of kinematic pair parameters on the excitation characteristics of the main bearing. The mechanical performance analysis of the mechanics of the four-star-type crank-linkage with clearance was carried out. Finally, a test bench of four-star-type crank-linkage mechanism was designed and built independently to analyze the effects of clearance size and rotational speed on the acceleration of the motion and vibration acceleration of the slider. The results show that the first-order reciprocating inertia force and second-order reciprocating moment of inertia mainly exist in the four-star-type crank-linkage mechanism. The friction force of the revolving pair can suppress part of the resonance peak, but it will broaden the excitation band and excite high-frequency vibration. The larger the clearance of the four-star-type crank-linkage mechanism kinematic pair, the higher the crankshaft speed, the larger the acceleration amplitude, and the more concentrated the phase trajectory. The research results of this paper can guide the low-noise design of other types of air compressors, help to improve the overall level of marine air compressors, and show future directions for the vibration control of four-star-type air compressors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3