Experimental and Numerical Study of the Strength Performance of Deep Beams with Perforated Thin Mild Steel Plates as Shear Reinforcement

Author:

Chai Khem Fei1,Woon Kai Siong1ORCID,Wong Jee Khai2ORCID,Lim Jee Hock1,Lee Foo Wei1,Lee Yee Ling1

Affiliation:

1. Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia

2. Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia

Abstract

This study aims to investigate a new shear reinforcement method which utilizes thin mild steel (TMS) plates as shear reinforcement in deep beams to replace conventional reinforcement. Thirteen reinforced concrete deep beam specimens with three different plate thicknesses and four varying perforated hole arrangements on the TMS plates were experimentally tested to determine the load-carrying capacity and crack pattern. The experimental results indicate that the 2.0 mm thick TMS plate has the highest load-carrying capacity. Among the four different hole arrangements on the TMS plates, the perforated plates with a three-column hole arrangement show the best performance in terms of load-carrying capacity, with a 2.9% increment against the control beam specimen. The specimens also demonstrated compatible elastic stiffness with the control beam that used conventional shear links. This shows that TMS plates have the potential to replace conventional shear links in deep beams. This proposed method also changed the failure mode from conventional diagonal shear tension failure to a combination of flexural failure and shear deformation. A numerical model was developed and was found to have a good correlation with the experimental results, demonstrating potential for use in future parametric investigations on deep beams and cost reduction in future experimental work.

Funder

Universiti Tunku Abdul Rahman

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3