The Statistical Error Optimization of Dye Sorption Equilibria for the Precise Prediction of Adsorption Isotherms on Activated Graphene

Author:

Deb Hridam1ORCID,Hasan K.2,Islam Md Zahidul3,Kai Lv1,Yang Shujuan1,Zhang Yong1,Yao Juming14

Affiliation:

1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

3. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

4. School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China

Abstract

The adsorption equilibrium of methyl blue (MB) at different temperatures was optimized using activated graphene (AG) as an adsorbent. The experimental data were compared using five linear and nonlinear adsorption isotherms, namely, Langmuir, Freundlich, Redlich–Peterson (R-P), Sips, and Toth, to estimate the best fit of the equilibrium data. Five distinct error functions were utilized to conduct nonlinear regression for the adsorption equilibrium: SSE, ARE, HYBRID, MPSD, and EABS. These functions offered a wide range of residuals for comparison. For a more accurate prediction of the isotherm model, two statistical techniques—SNE and CND—were applied. By using these techniques in conjunction, a more objective analysis of the error and deviation between the observed and predicted data was achieved, ultimately leading to improved accuracy in the error analysis. The sorption results demonstrated the highest MB removal of 691.89 mg g−1, which amounted to 98.32% within 120 min. The error analysis findings indicated that the SSE and HYBRID functions produced the smallest error residuals. Based on the “goodness of fit” criterion, the models in this study were ranked as R-P > Toth > Langmuir > Sips > Freundlich. Among these models, the R-P isotherm demonstrated the best fit for the data, exhibiting the lowest variance in residuals. Its CND value ranged between 0.0025 and 0.0048, which further supports its superior fit compared to the other models. The combination of multiple error functions and statistical methods allowed for a comprehensive and objective assessment of the nonlinear regression models. The results highlight the importance of using various techniques to improve the accuracy of error analysis and identify the best-fitting isotherms for adsorption.

Funder

Key R & D Plan of Zhejiang Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3