The Trace Element Concentrations and Oxidative Stress Parameters in Afterbirths from Women with Multiple Pregnancies

Author:

Grzeszczak Konrad1ORCID,Kapczuk Patrycja2ORCID,Kupnicka Patrycja2ORCID,Simińska Donata Kinga2ORCID,Lebdowicz-Knul Joanna3,Kwiatkowski Sebastian Karol3,Łanocha-Arendarczyk Natalia1ORCID,Chlubek Dariusz2ORCID,Kosik-Bogacka Danuta Izabela4ORCID

Affiliation:

1. Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland

2. Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland

3. Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland

4. Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland

Abstract

The aim of this study was to evaluate the intensity of oxidative stress by measuring the concentrations of lipid peroxidation products (LPO) in fetal membrane, umbilical cord, and placenta samples obtained from women with multiple pregnancies. Additionally, the effectiveness of protection against oxidative stress was assessed by measuring the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR). Due to the role of iron (Fe), copper (Cu), and zinc (Zn) as cofactors for antioxidant enzymes, the concentrations of these elements were also analyzed in the studied afterbirths. The obtained data were compared with newborn parameters, selected environmental factors, and the health status of women during pregnancy to determine the relationship between oxidative stress and the health of women and their offspring during pregnancy. The study involved women (n = 22) with multiple pregnancies and their newborns (n = 45). The Fe, Zn, and Cu levels in the placenta, umbilical cord, and fetal membrane were determined using inductively coupled plasma atomic emission spectroscopy (ICP-OES) using an ICAP 7400 Duo system. Commercial assays were used to determine SOD, GPx, GR, CAT, and LPO activity levels. The determinations were made spectrophotometrically. The present study also investigated the relationships between trace element concentrations in fetal membrane, placenta, and umbilical cord samples and various maternal and infant parameters in women. Notably, a strong positive correlation was observed between Cu and Zn concentrations in the fetal membrane (p = 0.66) and between Zn and Fe concentrations in the placenta (p = 0.61). The fetal membrane Zn concentration exhibited a negative correlation with shoulder width (p = −0.35), while the placenta Cu concentration was positively correlated with placenta weight (p = 0.46) and shoulder width (p = 0.36). The umbilical cord Cu level was positively correlated with head circumference (p = 0.36) and birth weight (p = 0.35), while the placenta Fe concentration was positively correlated with placenta weight (p = 0.33). Furthermore, correlations were determined between the parameters of antioxidative stress (GPx, GR, CAT, SOD) and oxidative stress (LPO) and the parameters of infants and maternal characteristics. A negative correlation was observed between Fe and LPO product concentrations in the fetal membrane (p = −0.50) and placenta (p = −0.58), while the Cu concentration positively correlated with SOD activity in the umbilical cord (p = 0.55). Given that multiple pregnancies are associated with various complications, such as preterm birth, gestational hypertension, gestational diabetes, and placental and umbilical cord abnormalities, research in this area is crucial for preventing obstetric failures. Our results could serve as comparative data for future studies. However, we advise caution when interpreting our results, despite achieving statistical significance.

Funder

Pomeranian Medical University

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3