Structural Basis of PE_PGRS Polymorphism, a Tool for Functional Modulation

Author:

Kramarska Eliza1,De Maio Flavio2ORCID,Delogu Giovanni34,Berisio Rita1ORCID

Affiliation:

1. Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy

2. Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy

3. Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche E Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy

4. Laboratory Medicine, Mater Olbia Hospital, 07026 Olbia, Italy

Abstract

Background: The mycobacterial PE_PGRS protein family is present only in pathogenic strains of the genus mycobacterium, such as Mtb and members of the MTB complex, suggesting a likely important role of this family in pathogenesis. Their PGRS domains are highly polymorphic and have been suggested to cause antigenic variations and facilitate pathogen survival. The availability of AlphaFold2.0 offered us a unique opportunity to better understand structural and functional properties of these domains and a role of polymorphism in Mtb evolution and dissemination. Methods: We made extensive use of AlphaFold2.0 computations and coupled them with sequence distribution phylogenetic and frequency analyses, and antigenic predictions. Results: Modeling of several polymorphic forms of PE_PGRS33, the prototype of the PE_PGRS family and sequence analyses allowed us to predict the structural impact of mutations/deletions/insertions present in the most frequent variants. These analyses well correlate with the observed frequency and with the phenotypic features of the described variants. Conclusions: Here, we provide a thorough description of structural impacts of the observed polymorphism of PE_PGRS33 protein and we correlate predicted structures to the known fitness of strains containing specific variants. Finally, we also identify protein variants associated with bacterial evolution, showing sophisticated modifications likely endowed with a gain-of-function role during bacterial evolution.

Funder

EU

BactiVax

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3