Two Nothofagus Species in Southernmost South America Are Recording Divergent Climate Signals

Author:

Soto-Rogel PamelaORCID,Aravena Juan Carlos,Villalba RicardoORCID,Bringas Christian,Meier Wolfgang Jens-HenrikORCID,Gonzalez-Reyes Álvaro,Grießinger JussiORCID

Abstract

Recent climatic trends, such as warming temperatures, decrease in rainfall, and extreme weather events (e.g., heatwaves), are negatively affecting the performance of forests. In northern Patagonia, such conditions have caused tree growth reduction, crown dieback, and massive die-back events. However, studies looking at these consequences in the southernmost temperate forest (Nothofagus betuloides and Nothofagus pumilio) are much scarcer, especially in southernmost South America (SSA). These forests are also under the influence of the positive phase of Antarctic Oscillation (AAO, also known as Southern Annular Mode, SAM) that has been associated with increasing trends in temperature, drought, and extreme events in the last decades. This study evaluated the growth patterns and the climatic response of eight new tree-ring chronologies from Nothofagus species located at the upper treeline along different environmental gradients in three study areas: Punta Arenas, Yendegaia National Park, and Navarino Island in SSA. The main modes of the ring-width index (RWI) variation were studied using principal component analysis (PCA). We found that PC1 has the higher loadings for sites with precipitation values over 600 mm/yr, PC2 with N. betuloides sites, and PC3 with higher loadings for sites with precipitation values below 600 mm/yr. Our best growth-climate relationships are between N. betuloides and AAO and the most northeastern site of N. pumilio with relative humidity (which coincides with heatwaves and extreme drought). The climatic signals imprinted in the southernmost forests are sensitive to climatic variability, the climate forcing AAO, and the effects of climate change in the last decades.

Funder

Agencia Nacional de Investigación y Desarrollo

ANID-BMBF project AVOID

Fondecyt

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3