Parsing Long-Term Tree Recruitment, Growth, and Mortality to Identify Hurricane Effects on Structural and Compositional Change in a Tropical Forest

Author:

Zhang JiayingORCID,Heartsill-Scalley TamaraORCID,Bras Rafael L.ORCID

Abstract

After hurricane disturbances in tropical forests, the size structure and species composition are affected by immediate mortality, and subsequent recruitment and individual growth. Often, immediate post-disturbance stand-level data are presented but understanding of the components that affect changes in growth and longer-term responses to forest structure and composition are lacking. To answer questions about how mortality, recruitment, and growth change among successional Plant Functional Types (PFT) through time after a hurricane disturbance, we use long-term census data (1989–2014) collected in the Luquillo Experimental Forest, Puerto Rico. We developed an algorithm to fill missing diameter data from the long-term data set that was collected three months after Hurricane Hugo; and subsequently at five-year intervals. Both the immediate hurricane-induced mortality and subsequent mortality were lower in stems with larger diameters, but varied among successional PFTs Early, Mid, Late, and Palm. Tree growth rates were observed to decrease with time since the hurricane disturbance. Five years after the hurricane, mortality was minimal but then increased gradually with time. In contrast, recruitment was highest five years after the hurricane and then decreased with time. The palm Prestoea montana became the most abundant species in the forest after the hurricane, as it had the lowest immediate hurricane-induced and subsequent mortality, and the highest recruitment. Twenty-five years after the hurricane, the palm and the Late PFT dominate the forest after shifting species composition from pre-hurricane conditions.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3