Abstract
Metallic contaminants (solid) are generated by friction pair, causing wear of equipment by enters the lubricating system. This poses a great potential threat to the normal operation of such machines. The timely analysis and detection of debris can lead to the avoidance of mechanical failures. Abnormal wear in machinery may produce debris exceeding 10 μm. The traditional inductance detection method has low sensitivity and cannot meet the actual detection requirements. To boost the sensitivity of the inductance sensor, the mutual inductance of coils and the strong magnetic conductivity of permalloy was utilized to design a high sensitivity inductance sensor for the detection of debris in lubricating oil. This design was able to detect 10–15 μm iron particles and 65–70 μm copper particles in the oil. The experimental results illustrate that low-frequency excitation is the best for detecting ferromagnetic particles, while high-frequency excitation has the best effect for detecting non-ferromagnetic particles. This paper demonstrates the significant advantages of coil mutual inductance, and strong magnetic conductivity of permalloy in improving the detection sensitivity of oil debris sensors. This will provide technical support for wear detection in mechanical equipment and fault diagnosis.
Funder
National Natural Science Foundation of China
LiaoNing Revitalization Talents Program
Technology Innovation Foundation of Dalian
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献