Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques

Author:

Zwemer Matthijs H.ORCID,Groot Herman G. J.ORCID,Wijnhoven RobORCID,Bondarev Egor,de With Peter H. N.

Abstract

This paper presents a camera-based vessel-speed enforcement system based on two cameras. The proposed system detects and tracks vessels per camera view and employs a re-identification (re-ID) function for linking vessels between the two cameras based on multiple bounding-box images per vessel. Newly detected vessels in one camera (query) are compared to the gallery set of all vessels detected by the other camera. To train and evaluate the proposed detection and re-ID system, a new Vessel-reID dataset is introduced. This extensive dataset has captured a total of 2474 different vessels covered in multiple images, resulting in a total of 136,888 vessel bounding-box images. Multiple CNN detector architectures are evaluated in-depth. The SSD512 detector performs best with respect to its speed (85.0% Recall@95Precision at 20.1 frames per second). For the re-ID of vessels, a large portion of the total trajectory can be covered by the successful detections of the SSD model. The re-ID experiments start with a baseline single-image evaluation obtaining a score of 55.9% Rank-1 (49.7% mAP) for the existing TriNet network, while the available MGN model obtains 68.9% Rank-1 (62.6% mAP). The performance significantly increases with 5.6% Rank-1 (5.7% mAP) for MGN by applying matching with multiple images from a single vessel. When emphasizing more fine details by selecting only the largest bounding-box images, another 2.0% Rank-1 (1.4% mAP) is added. Application-specific optimizations such as travel-time selection and applying a cross-camera matching constraint further enhance the results, leading to a final 88.9% Rank-1 and 83.5% mAP performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vessel Velocity Estimation and Docking Analysis: A Computer Vision Approach;Algorithms;2023-06-30

2. Unsupervised Maritime Vessel Re-Identification With Multi-Level Contrastive Learning;IEEE Transactions on Intelligent Transportation Systems;2023-05

3. Optimizing Train-Test Data for Person Re-Identification in Real-World Applications;2022 the 5th International Conference on Machine Vision and Applications (ICMVA);2022-02-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3