Abstract
Energy dissipation and decoherence in state-of-the-art quantum nanomaterials and related nanodevices are routinely described and simulated via local scattering models, namely relaxation-time and Boltzmann-like schemes. The incorporation of such local scattering approaches within the Wigner-function formalism may lead to anomalous results, such as suppression of intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density positivity. The primary goal of this article is to investigate a recently proposed quantum-mechanical (nonlocal) generalization (Phys. Rev. B 2017, 96, 115420) of semiclassical (local) scattering models, extending such treatment to carrier–carrier interaction, and focusing in particular on the nonlocal character of Pauli-blocking contributions. In order to concretely show the intrinsic limitations of local scattering models, a few simulated experiments of energy dissipation and decoherence in a prototypical quantum-well semiconductor nanostructure are also presented.
Subject
General Physics and Astronomy
Reference95 articles.
1. Superlattice and Negative Differential Conductivity in Semiconductors
2. Semiconductor Nanostructures: Quantum States and Electronic Transport;Ihn,2010
3. Physics of Quantum Electron Devices;Capasso,2011
4. Wave Mechanics Applied to Semiconductor Heterostructures;Bastard,1988
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献