Vulnerability Management Models Using a Common Vulnerability Scoring System

Author:

Walkowski MichałORCID,Oko JacekORCID,Sujecki SławomirORCID

Abstract

Vulnerability prioritization is an essential element of the vulnerability management process in data communication networks. Accurate prioritization allows the attention to be focused on the most critical vulnerabilities and their timely elimination; otherwise, organizations may face severe financial consequences or damage to their reputations. In addition, the large amounts of data generated by various components of security systems further impede the process of prioritizing the detected vulnerabilities. Therefore, the detection and elimination of critical vulnerabilities are challenging tasks. The solutions proposed for this problem in the scientific literature so far—e.g., PatchRank, SecureRank, Vulcon, CMS, VDNF, or VEST—are not sufficient because they do not consider the context of the organization. On the other hand, commercial solutions, such as Nessus, F-Secure, or Qualys, do not provide detailed information regarding the prioritization procedure, except for the scale. Therefore, in this paper, the authors present an open-source solution called the Vulnerability Management Center (VMC) in order to assist organizations with the vulnerability prioritization process. The VMC presents all calculated results in a standardized way by using a Common Vulnerability Scoring System (CVSS), which allows security analysts to fully understand environmental components’ influences on the criticality of detected vulnerabilities. In order to demonstrate the benefits of using the the open-source VMC software developed here, selected models of a vulnerability management process using CVSS are studied and compared by using three different, real testing environments. The open-source VMC suite developed here, which integrates information collected from an asset database, is shown to accelerate the process of removal for the critical vulnerabilities that are detected. The results show the practicability and efficacy of the selected models and the open-source VMC software, which can thus reduce organizations’ exposure to potential threats.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3