Development of Patient Specific Conformal 3D-Printed Devices for Dose Verification in Radiotherapy

Author:

Jreije AntonioORCID,Keshelava Lalu,Ilickas Mindaugas,Laurikaitiene Jurgita,Urbonavicius Benas Gabrielis,Adliene DianaORCID

Abstract

In radiation therapy, a bolus is used to improve dose distribution in superficial tumors; however, commercial boluses lack conformity to patient surface leading to the formation of an air gap between the bolus and patient surface and suboptimal tumor control. The aim of this study was to explore 3D-printing technology for the development of patient-specific conformal 3D-printed devices, which can be used for the radiation treatment of superficial head and neck cancer (HNC). Two 3D boluses (0.5 and 1.0 cm thick) for surface dose build-up and patient-specific 3D phantom were printed based on reconstruction of computed tomography (CT) images of a patient with HNC. The 3D-printed patient-specific phantom indicated good tissue equivalency (HU = −32) and geometric accuracy (DSC = 0.957). Both boluses indicated high conformity to the irregular skin surface with minimal air gaps (0.4–2.1 mm for 0.5 cm bolus and 0.6–2.2 mm for 1.0 cm bolus). The performed dose assessment showed that boluses of both thicknesses have comparable effectiveness, increasing the dose that covers 99% of the target volume by 52% and 26% for single field and intensity modulated fields, respectively, when compared with no bolus case. The performed investigation showed the potential of 3D printing in development of cost effective, patient specific and patient friendly conformal devices for dose verification in radiotherapy.

Funder

Lietuvos Mokslo Taryba

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3