Abstract
In this paper, we consider two mechanisms capable of inducing strain localisation in particulate geomaterials in compression: the apparent negative stiffness and the incremental incompressibility caused by dilatancy. It is demonstrated that the apparent negative stiffness can be produced by the rotation of clusters of particles in the presence of compression. The clusters are formed by connecting the particles by the bonds that still remain intact in the process of bond breakage in compression. We developed a 2D isotropic model of incremental incompressibility showing that a single strain localisation zone is formed inclined at 45° to the direction of axial compressive loading. This mechanism of localisation was analysed through Particle Flow Code (PFC) 2D and 3D simulations. It is shown that, in the simulations, the peak stress (the onset of localisation) does correspond to the incremental Poisson’s ratio, reaching the critical values of 1 (in 2D) and 0.5 (in 3D).
Funder
Australian Research Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献