Non-Classic Atmospheric Optical Turbulence: Review

Author:

Korotkova Olga,Toselli Italo

Abstract

Theoretical models and results of experimental campaigns relating to non-classic regimes occurring in atmospheric optical turbulence are overviewed. Non-classic turbulence may manifest itself through such phenomena as a varying power law of the refractive-index power spectrum, anisotropy, the presence of constant-temperature gradients and coherent structures. A brief historical introduction to the theories of optical turbulence, both classic and non-classic, is first presented. The effects of non-classic atmospheric turbulence on propagating light beams are then discussed, followed by the summary of results on measuring the non-classic turbulence, on its computer and in-lab simulations and its controlled synthesis. The general theory based on the extended Huygens–Fresnel method, capable of quantifying various effects of non-classic turbulence on propagating optical fields, including the increased light diffraction, beam profile deformations, etc., is then outlined. The review concludes by a summary of optical engineering applications that can be influenced by atmospheric non-classic turbulence, e.g., remote sensing, imaging and wireless optical communication systems. The review makes an accent on the results developed by the authors for the recent AFOSR MURI project on deep turbulence.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference108 articles.

1. Principes généraux du mouvement des fluides. [The General Principles of the Movement of Fluids];Euler;Mém. Acad. Sci. Berl.,1757

2. On some cases of fluid motion;Stokes;Trans. Camb. Phil. Soc.,1843

3. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums;Stokes;Trans. Camb. Phil. Soc.,1851

4. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels;Reynolds;Phil. Trans. R. Soc.,1883

5. Weather Prediction by Numerical Processes;Richardson,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3