Combined Use of 3D and HSI for the Classification of Printed Circuit Board Components

Author:

Polat Songuel,Tremeau Alain,Boochs Frank

Abstract

Successful recycling of electronic waste requires accurate separation of materials such as plastics, PCBs and electronic components on PCBs (capacitors, transistors, etc.). This article therefore proposes a vision approach based on a combination of 3D and HSI data, relying on the mutual support of the datasets to compensate existing weaknesses when using single 3D- and HSI-Sensors. The combined dataset serves as a basis for the extraction of geometric and spectral features. The classification is performed and evaluated based on these extracted features which are exploited through rules. The efficiency of the proposed approach is demonstrated using real electronic waste and leads to convincing results with an overall accuracy (OA) of 98.24%. To illustrate that the addition of 3D data has added value, a comparison is also performed with an SVM classification based only on hyperspectral data.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential;Forti,2020

2. Growing applications of hyperspectral and multispectral imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3