Developing a Recommendation Model for the Smart Factory System

Author:

Chang Chun-Yang,Tu Chun-Ai,Huang Wei-Luen

Abstract

In Industry 4.0, the concept of a Smart Factory heralds a new phase in manufacturing; the Smart Factory System (SFS) will have a huge demand in Taiwan. However, the cost of constructing a factory system will be high, and the complexity processes and introduction time must be considered. Thus, it is important to figure out how to grasp the key success factors for Smart Factories to reduce difficulties in the process, deal with the occurrence of problems, and improve the success rate of constructing Smart Factories. This research constructs an SFS recommendation model to make up for past research deficiencies in terms of recommendation. It combines the methodology of the Engel–Kollat–Blackwell Model (EKB Model) and the Modified Delphi Method to derive SFS recommendation indicators. Through analyzing weights, the ELECTRE II was used to obtain the importance of each dimension by calculating the Modified Compound Advantage Matrix. For prototype indicators, it reviewed the past literature to find out deficiencies and examined the world’s four largest manufactories or computer technology corporations to analyze their Smart Factory solutions regarding the SFS function characteristics. The survey ran for several rounds with a group of five experts to amend indicators until a consensus was obtained. It proposed 64 indicators of 8 primary dimensions in total, based on the Updated Information System Success Model, and then added the concepts of SFS Function characteristics, Information Security, Perceived Value, Perceived Risk, and UI Design. According to the indicators, the framework and prototype of this system will provide solutions and references for purchasing SFS, the functions of which include SFS purchase ability analysis, demand analysis of manufacture problems, and raking and scoring of recommendation indicators. It will provide real-time ranking and the best alternative recommendations to suppliers, and will not only be referred to for design and modification but also enable the requirements to be closer to the users’ demands.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. The Smart Factory: Exploring Adaptive and Flexible Manufacturing Solutions

2. Industry 4.0 Upgrading of Germany’s Industrial Capabilities on the Horizon, Deutsche Bank (DB) Researchfile:///C:/Users/MDPI/AppData/Local/Temp/Industry_4_0%20_Upgrading_of_Germany%25u2019s_industrial_ca.pdf

3. The More Things Change: Value Creation, Value capture, and the Internet of Things;Raynor,2015

4. A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3