Abstract
There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community. Currently, many researchers maintain their own excel sheets, prepared manually by their team by tabulating the experimental data collected from scientific journals, and analyzing the data by performing manual calculations using formulas to determine the strength of the material. In this study, we propose a big data storage for material science data and its processing parameters information to address the laborious process of data tabulation from scientific articles, data mining techniques to retrieve the information from databases to perform big data analytics, and a machine learning prediction model to determine material strength insights. Three models are proposed based on Logistic regression, Support vector Machine SVM and Random Forest Algorithms. These models are trained and tested using a 10-fold cross validation approach. The Random Forest classification model performed better on the independent dataset, with 87% accuracy in comparison to Logistic regression and SVM with 72% and 78%, respectively.
Funder
National Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献