Scheduling Period Selection Based on Stability Analysis for Engagement Control Task of Automatic Clutches

Author:

Ding Zhao,Chen Li,Chen Jun,Cheng Xiaoxuan,Yin Chengliang

Abstract

The clutch engagement process involves three phases known as open, slipping, and locked and takes a few seconds. The engagement control program runs in an embedded control unit, in which discretization may induce oscillation and even instability in the powertrain due to an improper scheduling period for the engagement control task. To properly select the scheduling period, a methodology for control–scheduling co-design during clutch engagement is proposed. Considering the transition of the friction state from slipping to being locked, the co-design framework consists of two steps. In the first step, a stability analysis is conducted for the slipping phase based on a linearized system model enveloping the driving and driven part of the clutch, feed-forward and feedback control loop together with a zero-order signal hold element. The critical period is determined according to pole locations, and factors influencing the critical period are investigated. In the second step, real-time hardware-in-the-loop experiments are carried out to inspect the dynamic response concerning the friction state transition. A sub-boundary within the stable region is found to guarantee the control performance to satisfy the engineering requirements. In general, the vehicle jerk and clutch frictional loss increase with the increase in the scheduling period. When the scheduling period is shorter than the critical period, the rate of increase is mild. However, once the scheduling period exceeds the critical period, the rate of increase becomes very high.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3