Spatiotemporal Correlation-Based Accurate 3D Face Imaging Using Speckle Projection and Real-Time Improvement

Author:

Xiong WeiORCID,Yang Hongyu,Zhou PeiORCID,Fu Keren,Zhu Jiangping

Abstract

The reconstruction of 3D face data is widely used in the fields of biometric recognition and virtual reality. However, the rapid acquisition of 3D data is plagued by reconstruction accuracy, slow speed, excessive scenes and contemporary reconstruction-technology. To solve this problem, an accurate 3D face-imaging implementation framework based on coarse-to-fine spatiotemporal correlation is designed, improving the spatiotemporal correlation stereo matching process and accelerating the processing using a spatiotemporal box filter. The reliability of the reconstruction parameters is further verified in order to resolve the contention between the measurement accuracy and time cost. A binocular 3D data acquisition device with a rotary speckle projector is used to continuously and synchronously acquire an infrared speckle stereo image sequence for reconstructing an accurate 3D face model. Based on the face mask data obtained by the high-precision industrial 3D scanner, the relationship between the number of projected speckle patterns, the matching window size, the reconstruction accuracy and the time cost is quantitatively analysed. An optimal combination of parameters is used to achieve a balance between reconstruction speed and accuracy. Thus, to overcome the problem of a long acquisition time caused by the switching of the rotary speckle pattern, a compact 3D face acquisition device using a fixed three-speckle projector is designed. Using the optimal combination parameters of the three speckles, the parallel pipeline strategy is adopted in each core processing unit to maximise system resource utilisation and data throughput. The most time-consuming spatiotemporal correlation stereo matching activity was accelerated by the graphical processing unit. The results show that the system achieves real-time image acquisition, as well as 3D face reconstruction, while maintaining acceptable systematic precision.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Sichuan Province

Sichuan Province Science and Technology Support Program

Chengdu Key Research and Development Support Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3