Modified Neural Architecture Search (NAS) Using the Chromosome Non-Disjunction

Author:

Park Kang-MoonORCID,Shin DonghoonORCID,Chi Sung-Do

Abstract

This paper proposes a deep neural network structuring methodology through a genetic algorithm (GA) using chromosome non-disjunction. The proposed model includes methods for generating and tuning the neural network architecture without the aid of human experts. Since the original neural architecture search (henceforth, NAS) was announced, NAS techniques, such as NASBot, NASGBO and CoDeepNEAT, have been widely adopted in order to improve cost- and/or time-effectiveness for human experts. In these models, evolutionary algorithms (EAs) are employed to effectively enhance the accuracy of the neural network architecture. In particular, CoDeepNEAT uses a constructive GA starting from minimal architecture. This will only work quickly if the solution architecture is small. On the other hand, the proposed methodology utilizes chromosome non-disjunction as a new genetic operation. Our approach differs from previous methodologies in that it includes a destructive approach as well as a constructive approach, and is similar to pruning methodologies, which realizes tuning of the previous neural network architecture. A case study applied to the sentence word ordering problem and AlexNet for CIFAR-10 illustrates the applicability of the proposed methodology. We show from the simulation studies that the accuracy of the model was improved by 0.7% compared to the conventional model without human expert.

Funder

Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3