Antibacterial Efficacy of Some Medicinal Plants on Multidrug Resistance Bacteria and Their Toxicity on Eukaryotic Cells

Author:

Bataineh Sereen M. B.,Tarazi Yaser H.,Ahmad Wafá A.

Abstract

The aim of this study was to evaluate the in vitro antimicrobial activity of medicinal methanolic plant extracts against multidrug-resistant bacteria to determine the cytotoxicity of these extracts on eukaryotic cells, and to confirm their efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA) in experimental animals. The effects of the methanol extract of sixty folk plants were investigated on; MRSA, Extended Spectrum Beta-Lactamase E. coli and MDR Pseudomonas aeruginosa by disc diffusion and MIC assay. Cytotoxicity was determined using MTT and hemolysis of human erythrocytes. Three plant extracts with the highest antimicrobial activities were tested using a challenge experiment on mice. Systemic infection was performed by intraperitoneal inoculation of (5 × 106 CFU/mL) of MRSA isolate. Then mice received 300 mg/kg body weight of the plant extracts daily for seven days. The efficacy of plant extracts was evaluated by general health, mortality rate, gross lesion, and histopathology study of inoculated mice. Only ten plants showed activities against different MDR bacteria with inhibitory zones ranging from (8 to 22 mm) in diameter. Of the ten medicinal plant extracts, Camellia sinensis and Aloysia citrodora showed the highest activities against MRSA and MSSA isolates, with MIC value ranging from 0.5 to 1.5 mg/ml, followed by Hibiscus sabdariffa, Thymus vulgaris, and Glycyrrhiza glabra. Furthermore, the extract of the effective plants showed low toxicity against Vero and fibroblasts cell lines, along with inhibitory activities to erythrocytes membrane disruption. The in vivo study demonstrated that Camellia sinensis showed significant activity against MRSA infections in mice. The results validate that these plants are effective and safe antibacterial agents against multidrug-resistance bacteria, and have the potential to be utilized as an alternative to antibiotics for the treatment of bacterial infections.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3