Smoke Particle, Polycyclic Aromatic Hydrocarbons and Total Benzo[a]pyrene Toxic Equivalence Emitted by Palm Oil Sewage Sludge Bio-Char Combustion

Author:

Kalasee Wachara,Dangwilailux Panya

Abstract

The size distribution, total particle mass concentration (TPMC), polycyclic aromatic hydrocarbons (PAHs) value, and total Benzo[a]pyrene Toxic Equivalence (BaPTE) concentration of smoke particles from palm oil sewage sludge (POSS) bio-char combustion were studied. In this experiment, temperature data of the POSS bio-char combustion were recorded in two parts: particle temperature (Tp) by using a two-color pyrometer and temperature at 300, 500 and 800 mm, respectively, above the fire base by using K-type thermocouples. The POSS bio-char moisture content, clean air speed values, and burning period affected the change of temperature above the fire base. The mass median aerodynamic diameter (MMAD) values of the POSS bio-char combustion were found to be 0.44 to 1.05 micron at various moisture contents and burning periods. The MMAD, TPMC, and PAHs values increased with increasing moisture content and decreased the POSS bio-char combustion period. For the total BaPTE values, the results showed that the decrease in moisture content of the POSS bio-char samples had a prime influence in decreasing the total BaPTE values. Meanwhile, with decreases in the clean air speed values, the total BaPTE values were increased. Comparing the total BaPTE data between the experimental results and predicted values, the first-degree model had a better fit in predicting than the zero-degree model; this result was confirmed by the higher mean of the coefficient of determination.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3