Abstract
Supercritical CO2 (SuCO2) dewatering can mitigate capillary tension and reduce wood collapse. In this study, Eucalyptus urophylla × E. grandis specimens were dewatered by SuCO2 at temperatures of 35, 40 and 55 °C, in pressures of 10 and 30 MPa, respectively, for 1h. Effects of temperature and pressure on dewatering rate, moisture content (MC) distribution and gradient, shrinkage and residual stress of wood after dewatering were investigated. The results indicate that the SuCO2 dewatering rate is much faster than that of conventional kiln drying (CKD). The dewatering rate increases with increasing of temperature and pressure; however, pressure has a significant influence, especially for the high-temperature dewatering process; the MC distribution after 1h dewatering is uneven and MC gradients decrease with reducing of mean final MC of wood. MC gradients along radial direction are much smaller than that in tangential direction; collapse of wood significantly reduces after dewatering due to SuCO2 decreasing the capillary tension, and residual stress of wood during dewatering is mainly caused by pressure of SuCO2, which decreases with increasing temperature. SuCO2 dewatering has great potential advantages in water-removal of wood prone to collapse or deformation.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献