Estimation of Distances in 3D by Orthodontists Using Digital Models

Author:

Makaremi Masrour,N’Kaoua Bernard

Abstract

In the field of orthodontics, digital dental arch models are increasingly replacing plaster models in orthodontic diagnostics. This change in interface from physical plaster models to digital image-based models raises the question of how orthodontists interpret intra- and inter-arch relationships from an image on a screen. In particular, the issue of the accuracy of the distances estimated on numerical models is crucial since the estimation of distances is the basis of the therapeutic decision-making process. Studies have shown that distances were well estimated on plaster models, but no study has verified this point on numerical models. This is the question that our study addresses. The experimental protocol consisted of collecting estimates of measurements made by orthodontists using digital models. The reliability of these measurements was then assessed by comparing them to the actual physical distances. We asked 31 orthodontists (19 women and 12 men; an average age of 37 years) to generate 3D model-based measurements of seven different elements: mandibular congestion, the maxillary intermolar distance, Spee’s curve, 16/26 symmetry, the right canine class, overbite, and overjet. These values were then compared to the actual measurements calculated using Insignia® software (ORMCO Corporation: Brea, CA, USA), using single sample t-tests. This test makes it possible to compare a distance estimated by the participants with a reference value, which corresponds here to the real distance. The results indicate that, overall, the distance estimates made on the 3D models differ significantly from the actual distances measured using the Insignia® software. This was particularly so for mandibular crowding (test value = 0; t (30) = 10.74; p ≤ 0.01), test value = 1; t (30) = 6.23; p ≤ 0.01). Although no study has focused on distance estimation on numerical models in the field of orthodontics, our results agree with the conclusions of studies showing that distances are not estimated in the same way in real environments and virtual environments. Additional studies will make it possible to identify more clearly the parameters (individual factors, equipment, etc.), which make it possible to improve the estimation of distances in the practice of orthodontics. In any case, these studies are necessary to improve the training of future practitioners in the use of virtual models for decision-making and to support them in the digital transition.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference62 articles.

1. What are virtual environments?;Stephen;IEEE Comput. Graph. Appl.,1994

2. Interaction 3D en réalité virtuelle. Etat de l'art

3. Affordable VR by 1994;Engler;Comput. Gaming World,1992

4. Application of virtual reality technology in clinical medicine;Li;Am. J. Transl. Res.,2017

5. An Approach to Physical Rehabilitation Using State-of-the-art Virtual Reality and Motion Tracking Technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3