A Potentiostat Readout Circuit with a Low-Noise and Mismatch-Tolerant Current Mirror Using Chopper Stabilization and Dynamic Element Matching for Electrochemical Sensors

Author:

Nam Kyeongsik,Choi Gyuri,Kim HyungseupORCID,Yoo Mookyoung,Ko HyounghoORCID

Abstract

This paper presents a potentiostat readout circuit with low-noise and mismatch-tolerant current mirror using chopper stabilization and dynamic element matching (DEM) for electrochemical sensors. Current-mode electrochemical sensors are widely used to detect the blood glucose and viruses in the diagnosis of various diseases such as diabetes, hyperlipidemia, and the H5N1 avian influenza virus (AIV). Low-noise and mismatch-tolerant characteristics are essential for sensing applications that require high reliability and high sensitivity. To achieve these characteristics, a proposed potentiostat readout circuit is implemented using the chopper stabilization scheme and the DEM technique. The proposed potentiostat readout circuit consists of a chopper-stabilized programmable gain transimpedance amplifier (TIA), gain-boosted cascode current mirror, and a control amplifier (CA). The chopper scheme, which is implemented in the TIA and CA, can reduce low frequency noise components, such as 1/f noise, and can obtain low-noise levels. The mismatch offsets of the cascode current mirror can be reduced by the DEM operation. The proposed current-mirror-based potentiostat readout circuit is designed using a standard 0.18 μm CMOS process and can measure the sensor current from 350 nA to 2.8 μA. The input-referred noise integrated from 0.1 Hz to 1 kHz is 21.7 pARMS, and the power consumption was 287.9 μW with a 1.8 V power supply.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implantable nanostructured MEA with biphasic current stimulator for retinal prostheses;Technology and Health Care;2023-09-15

2. Ultrasensitive bacterial sensing using a disposable all-in-one amperometric platform with self-noise cancellation;Biosensors and Bioelectronics;2023-08

3. A low-noise and mismatch-tolerant current-mirror-based potentiostat circuit for glucose monitoring;Microelectronics Journal;2023-02

4. Introduction;Self-powered Energy Harvesting Systems for Health Supervising Applications;2022

5. Models and Interfaces for Electrochemical Sensors: Architectures and Implementations;Biomedical Electronics, Noise Shaping ADCs, and Frequency References;2012-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3