Study on Microstructure, Mechanical Properties and Erosion Characteristics of Al-Si Alloy Manufactured by Continuous Casting Direct Rolling Process

Author:

Huang Bo-Chin,Chang Kai-Chieh,Hung Fei-YiORCID

Abstract

Al-Si alloys exhibit promising wear resistance, thus being mainly employed to weld Al alloy parts and processed into components of equipment. During the new continuous casting direct rolling (CCDR) process, the raw material gradually cools and solidifies, simultaneously plastically deformed. Hence, the materials manufactured through the CCDR process presented an unparalleled microstructure. The experimental results indicated that the strength of the CCDR Al-Si alloy can be increased through cold rolling. A two-stage heat treatment (solid solution and aging treatment) was introduced to improve the ductility and satisfy the industrial application. Furthermore, the erosion wear characteristics and fracture mechanism of the CCDR Al-Si alloy dominated by the ductility were confirmed. Both cold rolling specimens (FR) and those with heat treatment (FRH) showed greater wear resistance than as-manufactured (F). The FR specimens exhibited greater wear resistance owing to a higher Al matrix strength at a lower impact angle; on the other hand, at a higher impact angle, the FRH specimens with a softer Al matrix presented better wear resistance due to the formation of a lip structure to reduce material removal. The TEM results confirmed that the nanoscale grains formation was induced in the erosion-affected region and affected the Si concentration. Conclusively, the heat-treated CCDR Al-Si alloy possessed excellent erosion resistance and workability, which can serve as a reference processed as wear-resistant mechanical parts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3