Abstract
Modern solutions for system identification problems employ multilinear forms, which are based on multiple-order tensor decomposition (of rank one). Recently, such a solution was introduced based on the recursive least-squares (RLS) algorithm. Despite their potential for adaptive systems, the classical RLS methods require a prohibitive amount of arithmetic resources and are sometimes prone to numerical stability issues. This paper proposes a new algorithm for multiple-input/single-output (MISO) system identification based on the combination between the exponentially weighted RLS algorithm and the dichotomous descent iterations in order to implement a low-complexity stable solution with performance similar to the classical RLS methods.
Funder
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献