Analyzing the Performance of the S3 Object Storage API for HPC Workloads

Author:

Gadban FrankORCID,Kunkel JulianORCID

Abstract

The line between HPC and Cloud is getting blurry: Performance is still the main driver in HPC, while cloud storage systems are assumed to offer low latency, high throughput, high availability, and scalability. The Simple Storage Service S3 has emerged as the de facto storage API for object storage in the Cloud. This paper seeks to check if the S3 API is already a viable alternative for HPC access patterns in terms of performance or if further performance advancements are necessary. For this purpose: (a) We extend two common HPC I/O benchmarks—the IO500 and MD-Workbench—to quantify the performance of the S3 API. We perform the analysis on the Mistral supercomputer by launching the enhanced benchmarks against different S3 implementations: on-premises (Swift, MinIO) and in the Cloud (Google, IBM…). We find that these implementations do not yet meet the demanding performance and scalability expectations of HPC workloads. (b) We aim to identify the cause for the performance loss by systematically replacing parts of a popular S3 client library with lightweight replacements of lower stack components. The created S3Embedded library is highly scalable and leverages the shared cluster file systems of HPC infrastructure to accommodate arbitrary S3 client applications. Another introduced library, S3remote, uses TCP/IP for communication instead of HTTP; it provides a single local S3 gateway on each node. By broadening the scope of the IO500, this research enables the community to track the performance growth of S3 and encourage sharing best practices for performance optimization. The analysis also proves that there can be a performance convergence—at the storage level—between Cloud and HPC over time by using a high-performance S3 library like S3Embedded.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. AWS S3https://aws.amazon.com/de/s3/

2. OpenStack Swifthttps://github.com/openstack/swift

3. Kubernetes Native, High Performance Object Storagehttps://min.io

4. NetCDF: an interface for scientific data access

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Hopsworks Feature Store for Machine Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Model of Verification of Distributed Storage Systems;2023 IEEE East-West Design & Test Symposium (EWDTS);2023-09-22

3. Bixi: A EB-level Object Storage System Based on CEPH;Proceedings of the 8th International Conference on Cyber Security and Information Engineering;2023-09-22

4. A Simple Approach to Optimize S3 Object Gateways for Massive Numbers of Small File Writes;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3