Abstract
The increasing number of satellites orbiting around Earth has led to an uncontrolled increase in objects within the orbital environment. Since the beginning of the space age on 4 October 1957 (launch of Sputnik I), there have been more than 4900 space launches, leading to over 18,000 satellites and ground-trackable objects currently orbiting the Earth. For each satellite launched, several other objects are also sent into orbit, including rocket upper stages, instrument covers, and so on. Having a reliable system for tracking objects and satellites and monitoring their attitude is at present a mandatory challenge in order to prevent dangerous collisions and an increase in space debris. In this paper, the evaluation of the reflection coefficient of different shaped objects has been carried out by means of the bi-static reflection method, also known as NRL arch measurement, in order to evaluate their visibility and attitude in a wide range of frequencies (12–18 GHz). The test campaign aims to correlate the experimental measures with the hypothetical reflection properties of orbiting systems.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献