A Secure Biometric Key Generation Mechanism via Deep Learning and Its Application

Author:

Wang Yazhou,Li Bing,Zhang Yan,Wu Jiaxin,Ma Qianya

Abstract

Biometric keys are widely used in the digital identity system due to the inherent uniqueness of biometrics. However, existing biometric key generation methods may expose biometric data, which will cause users’ biometric traits to be permanently unavailable in the secure authentication system. To enhance its security and privacy, we propose a secure biometric key generation method based on deep learning in this paper. Firstly, to prevent the information leakage of biometric data, we utilize random binary codes to represent biometric data and adopt a deep learning model to establish the relationship between biometric data and random binary code for each user. Secondly, to protect the privacy and guarantee the revocability of the biometric key, we add a random permutation operation to shuffle the elements of binary code and update a new biometric key. Thirdly, to further enhance the reliability and security of the biometric key, we construct a fuzzy commitment module to generate the helper data without revealing any biometric information during enrollment. Three benchmark datasets including ORL, Extended YaleB, and CMU-PIE are used for evaluation. The experiment results show our scheme achieves a genuine accept rate (GAR) higher than the state-of-the-art methods at a 1% false accept rate (FAR), and meanwhile satisfies the properties of revocability and randomness of biometric keys. The security analyses show that our model can effectively resist information leakage, cross-matching, and other attacks. Moreover, the proposed model is applied to a data encryption scenario in our local computer, which takes less than 0.5 s to complete the whole encryption and decryption at different key lengths.

Funder

ShenZhen Science Technology and Innovation Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3