Potassium Recovery from Potassium Solution and Seawater Using Different Adsorbents

Author:

Shin Sora,Jho Eun HeaORCID,Park HyunJu,Lee Sungjong,Kim Joon Ha

Abstract

The potassium (K) sorption characteristics with three adsorbents, natural zeolite, ammonium acetate-treated zeolite, and manganese nodule, were studied and compared to see the potential use of manganese nodule as an alternative K adsorbent. In general, the Langmuir isotherm could fit the K sorption in the KCl solutions at different pH conditions better than the Freundlich isotherm. Based on the Langmuir parameters, the maximum K sorption was greater for the zeolite-based adsorbents (i.e., 40–42 mg g−1) than the manganese nodule (i.e., 2.0 mg g−1) at acidic conditions, while the manganese nodule (i.e., 9.7 mg g−1) showed better K sorption at neutral conditions. With the seawater samples, the zeolite-based adsorbents showed higher K recovery (4–14%) than the manganese nodule (0–8.8%). The K sorption on the zeolite-based adsorbents followed the pseudo-second-order kinetics and the K sorption rates were higher for the treated zeolite than the natural zeolite. The repeated sorption tests showed that the natural zeolite could potentially be reused up to three times without any significant loss of K sorption capacity, while the ammonium acetate-treated zeolite lost its K sorption capacity after the single sorption test. Overall, the results show that the manganese nodule may potentially be the alternative to zeolite for K recovery under certain conditions, yet the zeolite-based adsorbents are generally better than the manganese nodule. Thus, more studies to enhance the K recovery using zeolite, including surface modified zeolite, are recommended.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3