A Markov Chain Genetic Algorithm Approach for Non-Parametric Posterior Distribution Sampling of Regression Parameters

Author:

Pendharkar Parag C.1

Affiliation:

1. Information Systems School of Business Administration, Pennsylvania State University at Harrisburg, 777 West Harrisburg Pike, Middletown, PA 17057, USA

Abstract

This paper proposes a genetic algorithm-based Markov Chain approach that can be used for non-parametric estimation of regression coefficients and their statistical confidence bounds. The proposed approach can generate samples from an unknown probability density function if a formal functional form of its likelihood is known. The approach is tested in the non-parametric estimation of regression coefficients, where the least-square minimizing function is considered the maximum likelihood of a multivariate distribution. This approach has an advantage over traditional Markov Chain Monte Carlo methods because it is proven to converge and generate unbiased samples computationally efficiently.

Publisher

MDPI AG

Reference11 articles.

1. Nonparametric Maximum Likelihood Estimation by the Method of Sieves;Geman;Ann. Stat.,1982

2. Nonparametric Function Estimation;Gasser;Handbook of Statistics,1993

3. A Novel Nonparametric Maximum Likelihood Estimator for Probability Density Functions;Agarwal;IEEE Trans. Pattern Anal. Mach. Intell.,2017

4. Assessment of Alternative Methods for Analysing Maximum Rainfall Spatial Data Based on Generalized Extreme Value Distribution;Ferreira;SN Appl. Sci.,2024

5. A General Steady State Distribution Based Stopping Criteria for Finite Length Genetic Algorithms;Pendharkar;Eur. J. Oper. Res.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3